Sheafifiable Homotopy Model Categories
نویسنده
چکیده
If a Quillen model category can be specified using a certain logical syntax (intuitively, “is algebraic/combinatorial enough”), so that it can be defined in any category of sheaves, then the satisfaction of Quillen’s axioms over any site is a purely formal consequence of their being satisfied over the category of sets. Such data give rise to a functor from the category of topoi and geometric morphisms to Quillen model categories and Quillen adjunctions.
منابع مشابه
Sheafifiable Homotopy Model Categories, Part Ii
If a Quillen model category is defined via a suitable right adjoint over a sheafifiable homotopy model category (in the sense of part I of this paper), it is sheafifiable as well; that is, it gives rise to a functor from the category of topoi and geometric morphisms to Quillen model categories and Quillen adjunctions. This is chiefly useful in dealing with homotopy theories of algebraic structu...
متن کاملHomotopy theory and classifying spaces
What is a homotopy theory T? – Examples of homotopy theories (Tpair presentation) – The homotopy category Ho(T) – Examples of homotopy categories – Model category: (C, E) with extras – Examples of model categories (C, E) – Dividends from a model category structure on (C, E) – Equivalences between homotopy theories – T(C, E) ∼ T(C′, E ′) for model categories – Examples of equivalences between ho...
متن کاملHomotopy Locally Presentable Enriched Categories
We develop a homotopy theory of categories enriched in a monoidal model category V. In particular, we deal with homotopy weighted limits and colimits, and homotopy local presentability. The main result, which was known for simplicially-enriched categories, links homotopy locally presentable V-categories with combinatorial model V-categories, in the case where all objects of V are cofibrant.
متن کاملClosed model categories for presheaves of simplicial groupoids and presheaves of 2-groupoids
We prove that the category of presheaves of simplicial groupoids and the category of presheaves of 2-groupoids have Quillen closed model structures. We also show that the homotopy categories associated to the two categories are equivalent to the homotopy categories of simplicial presheaves and homotopy 2-types, respectively.
متن کاملSe p 20 06 Cofibrations in Homotopy Theory
We define Anderson-Brown-Cisinski (ABC) cofibration categories, and construct homotopy colimits of diagrams of objects in ABC cofibraction categories. Homotopy colimits for Quillen model categories are obtained as a particular case. We attach to each ABC cofibration category a right derivator. A dual theory is developed for homotopy limits in ABC fibration categories and for left derivators. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014